收录期刊

    高级检索

    基于堆叠残差时间卷积网络的视频雨量计算方法

    A video rainfall calculation method based on stacked residual time convolutional network

    • 摘要: 为提升“落地雨”监测网密度,给雨水情监测预报“三道防线”(“云中雨”监测预报、“落地雨”实时监测与产汇流预报、“洪水演进”监测与河系预报)提供更精准的数据支撑,充分利用已广泛密布的监控视频网络数据,提出一种利用视频数据的新型降雨量计算方法,充分挖掘降雨视频帧序列中的时序动态特征信息,结合RegNetY骨干网络,建立基于卷积神经网络(Convolutional Neural Network,CNN)+堆叠残差时间卷积网络(Temporal Convolutional Networks,TCN))混合架构的降雨计算模型。研究结果表明:模型在雨量筒比测中拟合优度指标R2NSEKGE均超过0.976,误差评价指标MAEMAPE最优达0.799 mm/h和3.79%;堆叠残差TCN结构能有效增强时序特征提取能力,在不同帧图像序列长度条件下均保持稳定的降雨强度计算性能,为高精度降雨监测提供了轻量化技术方案。

       

      Abstract: To enhance the density of the "Three Defense Lines" rainfall monitoring network, this study leverages the widely distributed surveillance video network data and proposes a novel rainfall estimation method utilizing video data. By fully exploiting the temporal dynamic features in rainfall video frame sequences, a hybrid CNN+TCN rainfall estimation model is established, integrating the RegNetY backbone network with a stacked TCN architecture. Experimental results demonstrate that the model achieves excellent performance in rain gauge comparisons, with goodness-of-fit metrics (R2, NSE and KGE) all exceeding 0.976, and optimal error evaluation metrics (MAE and MAPE) reaching 0.799 mm/h and 3.79%, respectively. The multilayer residual TCN structure effectively enhances temporal feature extraction, maintaining stable rainfall intensity estimation performance under varying frame sequence lengths. This study provides a lightweight technical solution for high-precision rainfall monitoring.

       

    /

    返回文章
    返回