收录期刊

    高级检索
    吴皓, 陈必焰, 黄宁, 谭井树, 靳文凭, 陈春花. 湖南省大区域三维水汽层析反演及降雨预报应用[J]. 中国防汛抗旱, 2024, 34(4): 8-16. DOI: 10.16867/j.issn.1673-9264.2024088
    引用本文: 吴皓, 陈必焰, 黄宁, 谭井树, 靳文凭, 陈春花. 湖南省大区域三维水汽层析反演及降雨预报应用[J]. 中国防汛抗旱, 2024, 34(4): 8-16. DOI: 10.16867/j.issn.1673-9264.2024088
    WU Hao, CHEN Biyan, HUANG Ning, TAN Jingshu, JIN Wenping, CHEN Chunhua. Application of 3D water vapor tomography inversion and rainfall forecasting in large area of Hunan Province[J]. China Flood & Drought Management, 2024, 34(4): 8-16. DOI: 10.16867/j.issn.1673-9264.2024088
    Citation: WU Hao, CHEN Biyan, HUANG Ning, TAN Jingshu, JIN Wenping, CHEN Chunhua. Application of 3D water vapor tomography inversion and rainfall forecasting in large area of Hunan Province[J]. China Flood & Drought Management, 2024, 34(4): 8-16. DOI: 10.16867/j.issn.1673-9264.2024088

    湖南省大区域三维水汽层析反演及降雨预报应用

    Application of 3D water vapor tomography inversion and rainfall forecasting in large area of Hunan Province

    • 摘要: 水汽是地球大气的重要组成部分,虽然在大气总量中仅占据很小的比例,但在时空上变化显著,且在灾害性天气的形成和演变中发挥着重要作用。全球导航卫星系统(Global Navigation Satellite System,GNSS)层析技术可有效获取高精度、高时空分辨率的水汽三维分布,已成为当下GNSS气象学的一个研究热点。基于卫星探测技术能够获取大范围的水汽图像,尤其是地球静止卫星兼具空间覆盖范围广和时间连续性高的优点,使其成为水汽监测研究的重要数据源。基于融合风云4A水汽产品和 GNSS 观测数据的层析模型,利用湖南省连续运行基准站(Hunan Continuous Operation Reference Station,HNCORS)观测数据进行水汽层析实验,获取了湖南省高时空分辨率的大气水汽密度三维分布场,验证了该技术可有效提升水汽密度场的反演精度;基于层析水汽产品构建了多参数神经网络降雨落区预测模型,进一步挖掘层析技术在降雨预测中的应用潜力。该研究将促进暴雨等灾害天气监测预判能力的提升,对水利工程洪水监测具有重大现实意义。

       

      Abstract: Water vapor is an important component of the Earth's atmosphere. Although water vapor accounts for a small proportion of the atmosphere, it varies greatly in space and time, and thus plays an essential role in the formation and evolution of disastrous weathers. GNSS tomography can effectively obtain the three-dimensional (3D) distribution of water vapor with high precision and high spatiotemporal resolution, which has become a research focus of GNSS meteorology. In addition, satellitebased water vapor detection technology can provide a wide range of water vapor images, especially geostationary satellites with the advantages of wide spatial coverage and good temporal continuity, making them an important data source for water vapor monitoring research. In this study, we establish the tomography model by integrating Fengyun-4A (FY-4A) water vapor products and GNSS observation data. Tomography experiments are carried out using the observation data of Hunan Continuously Operating Reference Stations (HNCORS) to obtain the 3D distribution field of water vapor density in Hunan Province with high spatiotemporal resolution. The tomographic results are fully validated by GNSS and reanalysis data. In addition, based on the tomographic water vapor products, the multi-parameter neural network prediction model of rainfall area is constructed in this study, which further explores the application potential of water vapor tomography technology in rainfall prediction. This study will promote the improvement of monitoring and prediction capabilities for heavy rain and other disaster weather and has a great significance for flood monitoring in water projects.

       

    /

    返回文章
    返回